On Function and Operator Modules

نویسنده

  • David BLECHER
چکیده

Let A be a unital Banach algebra. We give a characterization of the left Banach A-modules X for which there exists a commutative unital C-algebra C(K), a linear isometry i:X → C(K), and a contractive unital homomorphism θ:A → C(K) such that i(a· x) = θ(a)i(x) for any a ∈ A, x ∈ X . We then deduce a “commutative” version of the Christensen-Effros-Sinclair characterization of operator bimodules. In the last section of the paper, we prove a w-version of the latter characterization, which generalizes some previous work of Effros and Ruan. 1991 Mathematics Subject Classification. 46H25, 46J10, 47D25, 46B28. 1 Introduction. Let H be a Hilbert space and let B(H) be the C-algebra of all bounded operators on H. Let A ⊂ B(H) and B ⊂ B(H) be two unital closed subalgebras and let X ⊂ B(H) be a closed subspace. If axb belongs to X whenever a ∈ A, x ∈ X , b ∈ B, then X is called a (concrete) operator A-B-bimodule. The starting point of this paper is the abstract characterization of these bimodules due to Christensen, Effros, and Sinclair. Namely, let us consider two unital operator algebras A and B and let X be an arbitrary operator space. Assume that X is an A-B-bimodule. Then for any integer n ≥ 1, the Banach space Mn(X) of n×n matrices with entries in X can be naturally regarded as an Mn(A)-Mn(B)bimodule, by letting [aik]· [xkl]· [blj] = [ ∑ 1≤k,l≤n aik· xkl· blj ] for any [aik] ∈ Mn(A), [xkl] ∈ Mn(X), [blj ] ∈ Mn(B). It is shown in [CES] that if ‖a· x· b‖ ≤ ‖a‖‖x‖‖b‖ for any n ≥ 1 and any a ∈ Mn(A), x ∈ Mn(X), and b ∈ Mn(B), then there exist a Hilbert space H, and three complete isometries (1.1) J :X → B(H), π1:A → B(H), π2:B → B(H), such that π1, π2 are homomorphisms and J(a· x· b) = π1(a)J(x)π2(b) for any a ∈ A, x ∈ X , b ∈ B. In that case, X is called an (abstract) operator A-B-bimodule. Equivalently (in the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-positive and G-repositive solutions to some adjointable operator equations over Hilbert C^{∗}-modules

Some necessary and sufficient conditions are given for the existence of a G-positive (G-repositive) solution to adjointable operator equations $AX=C,AXA^{left( astright) }=C$ and $AXB=C$ over Hilbert $C^{ast}$-modules, respectively. Moreover, the expressions of these general G-positive (G-repositive) solutions are also derived. Some of the findings of this paper extend some known results in the...

متن کامل

The solutions to the operator equation $TXS^* -SX^*T^*=A$ in Hilbert $C^*$-modules

In this paper, we find explicit solution to the operator equation $TXS^* -SX^*T^*=A$ in the general setting of the adjointable operators between Hilbert $C^*$-modules, when $T,S$ have closed ranges and $S$ is a self adjoint operator.

متن کامل

*-Operator Frame for End_{mathcal{A}}^{ast}(mathcal{H})

In this paper, a new notion of frames is introduced: $ast$-operator frame as generalization of $ast$-frames in Hilbert $C^{ast}$-modules introduced by A. Alijani and M. A. Dehghan cite{Ali} and we establish some results.

متن کامل

Operator frame for $End_{mathcal{A}}^{ast}(mathcal{H})$

‎Frames generalize orthonormal bases and allow representation of all the elements of the space‎. ‎Frames play significant role in signal and image processing‎, ‎which leads to many applications in informatics‎, ‎engineering‎, ‎medicine‎, ‎and probability‎. ‎In this paper‎, ‎we introduce the concepts of operator frame for the space $End_{mathcal{A}}^{ast}(mathcal{H})$ of all adjointable operator...

متن کامل

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999